
Parallel Path Tracer using CUDA
Jim Liu
Owen Wang

URL

https://jim3060.github.io/PPwebsite/index.html

SUMMARY

We will implement an optimized path tracer leveraging GPU computing resources.

BACKGROUND

Path tracing is a computer graphics Monte Carlo method of rendering images of
three-dimensional scenes such that the global illumination is faithful to reality. We shoot rays
from every pixel on the camera and accumulate their illuminance along their path.

In 15-462, we implemented a single-threaded path tracer. However a few problems are present.

Firstly, the path tracer is slow as the path tracer shoots rays from every pixel. We expect to be
able to parallelize this algorithm.

Secondly, the final output image currently contains non-trivial amounts of noise. One solution
(KM15) is to use the gradient information to smooth the image which involves solving a Poisson
equation. This requires solving a sparse linear system which has the size of (imagesize)^2, and
is another area open to parallelization and improvement.

THE CHALLENGE

The first challenge is converting the single threaded CPU program into a CUDA implementation.
We will be required to find a way to stream all the BVH structure and material information into
CUDA.

The second challenge is improving memory access efficiency. In lecture 8, we talked about the
inefficient memory access problem of ray tracing and one solution using ray packets (SIMD
implementation). This problem will still be present in a CUDA implementation.

A further challenge is smoothing the image by solving PDE. Since the linear system we are
going to solve is very large, we must design an algorithm taking advantage of matrix blocking for

https://jim3060.github.io/PPwebsite/index.html
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Global_illumination

efficient memory access. We plan to research different algorithms and to find the one with
greatest parallel performance.

RESOURCES

● RTX 2080 from GHC machines
● Starter code from:

https://github.com/RayTracing/raytracing.github.io/tree/master/src/TheRestOfYourLife
(We will be using this instead of code from 15462 because it is clearer and has support
for textures)

● Kettunen, Markus, et al. "Gradient-domain path tracing." ACM Transactions on Graphics
(TOG) 34.4 (2015): 1-13.

GOALS AND DELIVERABLES

● A functioning and parallel path tracer.
● An analysis report regarding the performance and implementation. For example, we

may: analyze the performance difference of ray packets; provide speedup comparisons
between single threaded version and parallel version and the ideal; show performance
comparisons between different PDE solvers.

PLATFORM CHOICE

CUDA, GPU, RTX 2080

SCHEDULE

Week Items

Week 10 Proposal and coding environment setup

Week 11 Implement CUDA path tracer without gradient information

Week 12 Record and analyze basic path tracer’s performance

Week 13 (Mid) Implement the gradient domain method

Week 14 Parallelize the poisson solver

Week 15 Analyze the solver and path tracer’s overall performance

Week 16 Finalize and write report

